
Market.xyz - SDK
Penetration Testing

Prepared by: Halborn

Date of Engagement: May 17th, 2022 - May 31st, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) MULTIPLE OUTDATED PACKAGE DEPENDENCIES - MEDIUM 12

Description 12

Result 12

Risk Level 12

Recommendation 13

Remediation Plan 13

3.2 (HAL-02) LACK OF INPUT VALIDATION - LOW 14

Description 14

Code Location 14

Risk Level 17

Recommendation 17

Remediation Plan 18

3.3 (HAL-03) LACK OF ERROR HANDLING - LOW 19

Description 19

1

Code Location 19

Risk Level 21

Recommendation 21

Remediation Plan 22

3.4 (HAL-04) METHOD OVERLOAD AND ERRORS IGNORED - LOW 23

Description 23

Code Location 23

Risk Level 24

Recommendation 25

Remediation Plan 25

3.5 (HAL-05) INCORRECT TYPE OF TRANSFER INPUT - LOW 26

Description 26

Code Location 26

Risk Level 28

Recommendation 28

Remediation Plan 28

3.6 (HAL-06) MISSING METHODS - INFORMATIONAL 29

Description 29

Missing methods 29

Risk Level 29

Recommendation 29

Remediation Plan 30

3.7 (HAL-07) MISSING INPUT PARAMETER - INFORMATIONAL 31

Description 31

Code Location 31

Risk Level 32

2

Recommendation 32

Remediation Plan 32

3.8 (HAL-08) INCORRECT NAMING - INFORMATIONAL 33

Description 33

Code Location 33

Risk Level 34

Recommendation 34

Remediation Plan 34

3.9 (HAL-09) COMMENTS OF PENDING TASKS - INFORMATIONAL 35

Description 35

Code Location 35

Risk Level 35

Recommendation 36

Remediation Plan 36

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/20/2022 Elena Calvo

0.2 Document Edits 05/26/2022 Elena Calvo

0.3 Draft Review 05/27/2022 Gabi Urrutia

1.0 Remediation Plan 07/11/2022 Elena Calvo

1.1 Remediation Plan Review 07/11/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Elena Calvo Halborn Elena.Maranon@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Elena.Maranon@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Market.xyz engaged Halborn to conduct a penetration testing on their SDK

beginning on May 17th, 2022 and ending on May 31st, 2022 . The security

assessment was scoped to the SDK provided to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

a full-time security engineer to audit the security of the SDK which will

be used to communicate with the smart contracts. The security engineer is

a blockchain and security expert with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that SDK functions operate as intended

• Identify potential security issues with the SDK

In summary, Halborn identified some security risks that were addressed

and accepted by the Market.xyz team. The main ones are the following:

• Outdated and vulnerable package dependencies.

• Lack of input validation and error handling.

• Bad method implementations: wrong inputs, missing parameters, in-

correct naming, etc.

1.3 TEST APPROACH & METHODOLOGY

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

6

EX
EC

UT
IV

E
OV

ER
VI

EW

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

1. SDK Market.xyz

(a) Repository: market.xyz-sdk

(b) Commit ID: 46efbd8e9607710e7211220eecde6fde883a0d95

Out-of-scope: External libraries and financial related attacks

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/marketxyz/market-sdk
https://github.com/marketxyz/market-sdk/tree/46efbd8e9607710e7211220eecde6fde883a0d95

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 4 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-06)
(HAL-07)

(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)

(HAL-08)
(HAL-09)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) MULTIPLE OUTDATED PACKAGE
DEPENDENCIES

Medium SOLVED - 07/04/2022

(HAL-02) LACK OF INPUT VALIDATION Low RISK ACCEPTED

(HAL-03) LACK OF ERROR HANDLING Low RISK ACCEPTED

(HAL-04) METHOD OVERLOAD AND ERRORS
IGNORED

Low RISK ACCEPTED

(HAL-05) INCORRECT TYPE OF TRANSFER
INPUT

Low RISK ACCEPTED

(HAL-06) MISSING METHODS Informational ACKNOWLEDGED

(HAL-07) MISSING INPUT PARAMETER Informational ACKNOWLEDGED

(HAL-08) INCORRECT NAMING Informational ACKNOWLEDGED

(HAL-09) COMMENTS OF PENDING TASKS Informational ACKNOWLEDGED

10

EX
EC

UT
IV

E
OV

ER
VI

EW

11

FINDINGS & TECH
DETAILS

3.1 (HAL-01) MULTIPLE OUTDATED
PACKAGE DEPENDENCIES - MEDIUM

Description:

The automatic analysis of the project dependencies shows that there

are some vulnerable dependencies that should be updated to the patched

version.

One of these vulnerabilities has been rated as critical and the rest as

high.

Figure 1: npm audit evidence

The following table includes the links to the explanation of the

vulnerabilities and its remediation.

Result:

Package Vulnerability
Patched

version

async Prototype Pollution
=2.6.4

>=3.2.2

cross-fetch Incorrect Authorization
=2.2.6

>=3.1.5

minimist Prototype Pollution >=1.2.6

node-fetch
Exposure of Sensitive Information to an

Unauthorized Actor

=2.6.7

>=3.1.1

Risk Level:

Likelihood - 4

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/advisories/GHSA-fwr7-v2mv-hh25
https://github.com/advisories/GHSA-7gc6-qh9x-w6h8
https://github.com/advisories/GHSA-xvch-5gv4-984h
https://github.com/advisories/GHSA-r683-j2x4-v87g
https://github.com/advisories/GHSA-r683-j2x4-v87g

Impact - 3

Recommendation:

It is recommended to update all the dependencies of the project to

patch security issues. Executing the command npm audit fix would

update these dependencies automatically. In addition, it is also worth

considering continuously monitor the versions of SDK components and

their dependencies using tools like retire.js and Snyk. Please remember

to always obtain components only from official sources over secure

links. Prefer signed packages to reduce the chance of including a

modified, malicious component.

The async package update should be treated carefully due to its dependency

tree. Some packages depend on directly from this one and their update

may affect the code performance. The packages affected are: merkle-

patricia-tree, ethereumjs-block,ethereumjs-vm, web3-provider-engine and

@truffle/hdwallet-provider. It is recommended to study how it could

affect the update of this packages to the code before making the upgrade.

Remediation Plan:

SOLVED: The Market.xyz team solved the issue by updating the outdated

package dependencies.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) LACK OF INPUT
VALIDATION - LOW

Description:

During the SDK analysis it has been noticed that most of the

method’s implementation consists in a direct call to the contract

functions without any kind of input validation, error handling or data

operation.

The lack of input validation on the SDK leaves all kind of validations

to the contract itself, leading to an unnecessary computation waste

in the communication to the blockchain. A simple validation of input

parameters before the contract call and using a proper error handling

methodology will reduce the computational waste and highly improve the

quality and utility of the SDK, even some security problems could be

avoided, depending on the contracts code.

The next section contains some examples of this issue.

Code Location:

The function convertIRMtoCurve from market-sdk-main/src/lib/JumpRateModel.ts

implements multiple mathematical operations using values which are

extracted from the input, and they are not validated. Due to the use

of Big Number library, the overflow errors are discarded, but the

conversion of the input values to BN could raise an error due to the

mentioned lack of validation.

Listing 1: market-sdk-main/src/lib/JumpRateModels.ts (Lines 107-

112,127-131)

84 async convertIRMtoCurve(cToken: CToken) {

85 const [

86 reserveFactorMantissa ,

87 baseRatePerBlock ,

88 kink ,

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

89 multiplierPerBlock ,

90 jumpMultiplierPerBlock

91] = await Promise.all([

92 cToken.reserveFactorMantissa (),

93 this.baseRatePerBlock (),

94 this.kink(),

95 this.multiplierPerBlock (),

96 this.jumpMultiplierPerBlock ()

97]);

98

99 const borrowerRates: { x: number; y: number }[] = [];

100 const supplierRates: { x: number; y: number }[] = [];

101

102 for (let i = 0; i <= 100; i++) {

103 const supplyLevel =

104 (Math.pow(

105 (Number(

106 this._getSupplyRate(

107 Web3.utils.toBN((i * 1e16).toString ()),

108 Web3.utils.toBN(reserveFactorMantissa),

109 Web3.utils.toBN(kink),

110 Web3.utils.toBN(multiplierPerBlock),

111 Web3.utils.toBN(baseRatePerBlock),

112 Web3.utils.toBN(jumpMultiplierPerBlock)

113).toString (),

114) /

115 1e18) *

116 (this.sdk.options !. blocksPerMin * 60 * 24) +

117 1,

118 365,

119) -

120 1) *

121 100;

122

123 const borrowLevel =

124 (Math.pow(

125 (Number(

126 this._getBorrowRate(

127 Web3.utils.toBN((i * 1e16).toString ()),

128 Web3.utils.toBN(kink),

129 Web3.utils.toBN(multiplierPerBlock),

130 Web3.utils.toBN(baseRatePerBlock),

131 Web3.utils.toBN(jumpMultiplierPerBlock)

132).toString (),

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

133) /

134 1e18) *

135 (this.sdk.options !. blocksPerMin * 60 * 24) +

136 1,

137 365,

138) -

139 1) *

140 100;

141

142 supplierRates.push({ x: i, y: supplyLevel });

143 borrowerRates.push({ x: i, y: borrowLevel });

144 }

145 return { borrowerRates , supplierRates };

146 }

147 }

The following methods are two examples extracted from Comptroller class

(market-sdk-main/src/lib/Comptroller.ts). The first method makes a

partial input validation, checking whether the input is an instance of

CToken class or not. In case of negative result, it assigns the input

parameter “cToken” directly to the contract call, without verifying if

it is a real address or an empty string.

The second method assigns directly the input parameter to the contract

call without any kind of checking if the value could be converted to

number or BN.

Listing 2: market-sdk-main/src/lib/Comptroller.ts (Lines 47,54)

41 _setBorrowPaused(

42 cToken: CToken | string ,

43 state: boolean ,

44 tx?: NonPayableTx

45): PromiEvent <TransactionReceipt > {

46 cToken = cToken instanceof CToken ? cToken.address : cToken;

47 return this.contract.methods._setBorrowPaused(cToken , state).

ë send(tx);

48 }

49

50 _setCloseFactor(

51 newCloseFactorMantissa: number | string | BN ,

52 tx?: NonPayableTx

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

53): PromiEvent <TransactionReceipt > {

54 return this.contract.methods._setCloseFactor(

ë newCloseFactorMantissa).send(tx);

55 }

56

This example seems to obtain the input parameter from standard input

(because of the name arg0). That input is directly passed to the contract,

and any type of validation depends on how the client uses the SDK.

Listing 3: market-sdk-main/src/lib/Comptroller.ts (Line 413)

404 markets(

405 arg0: string ,

406 tx?: NonPayableTx

407): Promise <{

408 isListed: boolean;

409 collateralFactorMantissa: string;

410 0: boolean;

411 1: string;

412 }> {

413 return this.contract.methods.markets(arg0).call(tx);

414 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to implement input validation inside methods and

functions of the SDK to avoid non-necessary communications with the

blockchain and even preventing security issues (this affirmation depends

on how the contracts are implemented). Currently, all kinds of input

validation, as well as error handling, depend on how the user makes use

of the SDK, being responsible for adding the extra code needed for all

the checks, as it can be shown on the examples folder.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Market.xyz team accepted the risk of this finding.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) LACK OF ERROR
HANDLING - LOW

Description:

The complete analysis of the SDK has revealed that there is not any kind

of error handling along the code. As mentioned on the previous section,

most of the methods consist on direct calls to the contract without any

process of data inside, so the error handling is left to the contract

itself. However, there are some functions that implement mathematical

operations or data assignments whose potential errors are not handled.

The next section contains some examples of this issue.

Code Location:

The normalizePoolAsset function from market-sdk-main/src/lib/Pools.ts

file is a normalization function with 20 input parameters which are

directly assigned to variables. None of them are validated and there

is no error handling neither. Working with an array of such dimensions

could easily rise a NullPointer error in case of having any input missed.

Listing 4: market-sdk-main/src/lib/Pools.ts

70 export function normalizePoolAsset(raw: {

71 0: string;

72 1: string;

73 2: string;

74 3: string;

75 4: string;

76 5: string;

77 6: string;

78 7: string;

79 8: string;

80 9: string;

81 10: string;

82 11: string;

83 12: string;

84 13: boolean;

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

85 14: string;

86 15: string;

87 16: string;

88 17: string;

89 18: string;

90 19: string;

91 20: string;

92 }, sdk: MarketSDK): PoolAsset {

93 return {

94 cToken: new CToken(sdk , raw [0]),

95 underlyingToken: raw[1],

96 underlyingName: raw[2],

97 underlyingSymbol: raw[3],

98 underlyingDecimals: new BN(raw [4]),

99 underlyingBalance: new BN(raw [5]),

100 supplyRatePerBlock: new BN(raw [6]),

101 borrowRatePerBlock: new BN(raw [7]),

102 totalSupply: new BN(raw [8]),

103 totalBorrow: new BN(raw [9]),

104 supplyBalance: new BN(raw [10]),

105 borrowBalance: new BN(raw [11]),

106 liquidity: new BN(raw [12]),

107 membership: raw[13],

108 exchangeRate: new BN(raw [14]),

109 underlyingPrice: new BN(raw [15]),

110 oracle: raw[16],

111 collateralFactor: new BN(raw [17]),

112 reserveFactor: new BN(raw [18]),

113 adminFee: new BN(raw [19]),

114 fuseFee: new BN(raw [20]),

115 }

116 }

The method getPoolsByAccount from file market-sdk-main/src/lib/PoolDirectory.ts

implements some data processing. The input parameter is used to make

the contract call, and the result obtained is processed over two ‘for’

loops and pushed into a couple of arrays before being returned. Due

to the lack of input validation, in case of a wrong account parameter,

the result of the call would be an error. This potential error is not

handled.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 5: market-sdk-main/src/lib/PoolDirectory.ts

86 async getPoolsByAccount(

87 account: string ,

88 tx?: NonPayableTx

89): Promise <{

90 indexes: BN[];

91 pools: Pool [];

92 }> {

93 const { 0: indexesRaw , 1: poolsRaw } = await this.contract.

ë methods.getPoolsByAccount(account).call(tx);

94

95 const indexes: BN[] = [];

96 const pools: Pool[] = [];

97

98 for(const pool of poolsRaw){

99 pools.push(normalizePool(pool , this.sdk));

100 }

101 for(const index of indexesRaw){

102 indexes.push(new BN(index));

103 }

104 return { indexes , pools };

105 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

As mentioned on input validation issue, it is recommended to implement

error handling inside methods and functions of the SDK to facilitate to

the user working with the SDK. In case of error, if error handling is

applied, it would be easier to debug the code and find the root of the

problem. Currently, error handling, as well as input validation, depends

on how the user makes use of the SDK, being responsible for adding the

extra code needed for all the checks as it can be shown on the examples

folder.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Market.xyz team accepted the risk of this finding.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) METHOD OVERLOAD AND
ERRORS IGNORED - LOW

Description:

The method init, belonging to MarketSDK class, from the file market-

sdk-main/src/lib/MarketSDK.ts presents the same method name with two

different signatures and also two different implementations.

According to Typescript documentation, function/method overload is

allowed having different signatures as log as the implementation

signature is only defined once.

Reference:https://www.typescriptlang.org/docs/handbook/2/functions.

html#function-overloads

In addition, the init() method contains multiple @ts-ignore tags for

almost all the option parameters. According to Typescript documentation:

this comment only suppresses the error reporting, and we recommend you

use this comments very sparingly; therefore, it’s recommended to limit

the use of this tag and, in case of use, always reporting which error

will be suppressed.

Reference:https://www.typescriptlang.org/docs/handbook/release-notes/

typescript-2-6.html#suppress-errors-in-ts-files-using--ts-ignore-comments

Code Location:

First init method:

Listing 6: market-sdk-main/lib/MarketSDK.ts (Lines 23,27,30)

23 async init(){

24 if(!this.options){

25 const chainId = await this.web3.eth.getChainId () as keyof

ë typeof Addrs;

26

27 // @ts -ignore

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.typescriptlang.org/docs/handbook/2/functions.html#function-overloads
https://www.typescriptlang.org/docs/handbook/2/functions.html#function-overloads
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html#suppress-errors-in-ts-files-using--ts-ignore-comments
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html#suppress-errors-in-ts-files-using--ts-ignore-comments

28 if (Addrs[chainId].v2) {

29 this.options = {

30 // @ts -ignore

31 poolDirectory: Addrs[chainId].v2.poolDirectory ,

32 // @ts -ignore

33 poolLens: Addrs[chainId].v2.poolLens ,

34 // @ts -ignore

35 marketLens: Addrs[chainId].v2.marketLens ,

36 blocksPerMin: Addrs[chainId]. blocksPerMin

37 };

38 // @ts -ignore

39 } else if(Addrs[chainId].v1) {

40 this.options = {

41 // @ts -ignore

42 poolDirectory: Addrs[chainId].v1.poolDirectory ,

43 // @ts -ignore

44 poolLens: Addrs[chainId].v1.poolLens ,

45 // @ts -ignore

46 marketLens: Addrs[chainId].v1.marketLens ,

47 blocksPerMin: Addrs[chainId]. blocksPerMin

48 };

49 }}}

Second init method with different signature implementation:

Listing 7: market-sdk-main/lib/MarketSDK.ts (Line 58)

58 static async init(web3: Web3 , options ?: MarketOptions){

59 const sdk = new MarketSDK(web3 , options);

60 await sdk.init();

61

62 return sdk;

63 }

Risk Level:

Likelihood - 2

Impact - 2

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

For the duplicity of init signature, it is recommended to rename one of

the methods to avoid possible errors.

The excessive use of @ts-ignore tag would be fixed using a proper error

handling methodology like try-catch structure, as mentioned on finding

HAL-03.

Remediation Plan:

RISK ACCEPTED: The Market.xyz team accepted the risk of this finding.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) INCORRECT TYPE OF
TRANSFER INPUT - LOW

Description:

The methods liquidateBorrow, mint, repayBorrow and repayBorrowBehalf

belonging to class CTokenV2 from market-sdk-main/src/lib/CToken.ts are

defined on the ABI of the contract as payable functions; however, the

interface implemented by send parameter (tx) is NonPayableTX. This

interface does not accept the parameter value, which is already considered

on the interface PayableTx.

Code Location:

Declaration of liquidateBorrow method:

Listing 8: market-sdk-main/src/lib/CToken.ts (Lines 638,647)

635 liquidateBorrow(

636 borrower: string ,

637 cTokenCollateral: CTokenV2 | string ,

638 tx?: NonPayableTx

639): PromiEvent <TransactionReceipt > {

640

ABI interface for liquidateBorrow function of the contract:

Listing 9: market-sdk-main/abi/CTokenV2.json (Lines 1070-1071,1079-

1080)

1068 "name": "liquidateBorrow",

1069 "outputs": [],

1070 "payable": true,

1071 "stateMutability": "payable",

1072 "type": "function"

Declaration of mint method:

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 10: market-sdk-main/src/lib/CToken.ts (Line 647)

646 mint(

647 tx?: NonPayableTx

648): PromiEvent <TransactionReceipt > {

649 return this.contract.methods.mint().send(tx);

650 }

ABI interface for mint function of the contract:

Listing 11: market-sdk-main/abi/CTokenV2.json (Lines 1078-1079)

1076 "name": "mint",

1077 "outputs": [],

1078 "payable": true,

1079 "stateMutability": "payable",

1080 "type": "function"

Declaration of repayBorrow method:

Listing 12: market-sdk-main/src/lib/CToken.ts (Line 679)

678 repayBorrow(

679 tx?: NonPayableTx

680): PromiEvent <TransactionReceipt > {

681 return this.contract.methods.repayBorrow ().send(tx);

682 }

ABI interface for repayBorrow function of the contract:

Listing 13: market-sdk-main/abi/CTokenV2.json (Lines 1159-1160,1174-

1175)

1157 "name": "repayBorrow",

1158 "outputs": [],

1159 "payable": true,

1160 "stateMutability": "payable",

1161 "type": "function"

Declaration of repayBorrowBehalf method:

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 14: market-sdk-main/src/lib/CToken.ts (Line 685)

684 repayBorrowBehalf(

685 borrower: string ,

686 tx?: NonPayableTx

687): PromiEvent <TransactionReceipt > {

688 return this.contract.methods.repayBorrowBehalf(borrower).send(

ë tx);

689 }

ABI interface for repayBorrowBehalf function of the contract:

Listing 15: market-sdk-main/abi/CTokenV2.json (Lines 1174-1175)

1172 "name": "repayBorrowBehalf",

1173 "outputs": [],

1174 "payable": true,

1175 "stateMutability": "payable",

1176 "type": "function"

1177 },

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to change the tx type from NonPayableTx to PayableTx.

Remediation Plan:

RISK ACCEPTED: The Market.xyz team accepted the risk of this finding.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) MISSING METHODS -
INFORMATIONAL

Description:

The purpose of an SDK is to facilitate the use of the contract interface

to any user, translating the functions contained in the ABI files to a

group of Typescript classes and methods to make an easier integration

within the web environment.

During the analysis of the SDK, almost all the functions contained in

the ABI have been converted to typescript methods, but some of them have

been missed:

Missing methods:

Contract Function from ABI

ComptrollerV2 supplyCaps

CToken addReserves

CToken comptroller

CV2Token comptroller

JumpRateModel isInterestRateModel

PoolDirectory setAdminDeployer

PoolLensv1 directory

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to review the missed functions to verify if the absence

is due to a mistake during development, or it was on purpose.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Market.xyz team acknowledged this finding.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) MISSING INPUT
PARAMETER - INFORMATIONAL

Description:

The method getPoolSummary belonging to the class PoolLensV2 from file

market-sdk-main/src/lib/PoolLens.ts only have the ‘tx’ input parameter

defined, however, the ABI interface of the contract (PoolLensV2.json)

has defined another input parameter called comptroller from contract

Comptroller.

Code Location:

Method getPoolSummary from class PoolLensV2:

Listing 16: market-sdk-main/src/lib/PoolLens.ts (Lines 328,335)

327 async getPoolSummary(

328 tx?: NonPayableTx

329): Promise <{

330 totalSupply: BN ,

331 totalBorrow: BN ,

332 underlyingTokens: string[],

333 underlyingSymbols: string[],

334 }> {

335 const raw = await this.contract.methods.getPoolSummary(this.

ë address).call(tx);

336

337 return {

338 totalSupply: new BN(raw [0]),

339 totalBorrow: new BN(raw [1]),

340 underlyingTokens: raw[2],

341 underlyingSymbols: raw[3],

342 };

343 }

ABI interface for getPoolSummary from PoolLensV2:

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 17: market-sdk-main/abi/PoolLensV2.json (Lines 87-89)

84 {

85 "inputs": [

86 {

87 "internalType": "contract Comptroller",

88 "name": "comptroller",

89 "type": "address"

90 }

91],

92 "name": "getPoolSummary",

93 "outputs": [

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to modify the signature definition on the method

getPoolSummary from class PoolLensV2 to add the missing comptroller input

parameter.

Remediation Plan:

ACKNOWLEDGED: The Market.xyz team acknowledged this finding.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) INCORRECT NAMING -
INFORMATIONAL

Description:

The initialize method, belonging to CTokenV2 class, from file market-

sdk-main/src/lib/CToken.ts, has not been properly named regarding the ABI

interface of the contract.

Code Location:

Nomenclature of initialize function in CTokenV2 class:

Listing 18: market-sdk-main/src/lib/CToken.ts (Lines 586,599,602,613)

586 "initialize(address ,address ,uint256 ,string ,string ,uint8 ,uint256 ,

ë uint256)"(

587 comptroller: ComptrollerV2 | string ,

588 interestRateModel: string ,

589 initialExchangeRateMantissa: number | string | BN ,

590 name: string ,

591 symbol: string ,

592 decimals: number | string | BN ,

593 reserveFactorMantissa: number | string | BN ,

594 adminFeeMantissa: number | string | BN ,

595 tx?: NonPayableTx

596): PromiEvent <TransactionReceipt > {

597 comptroller = comptroller instanceof ComptrollerV2 ?

ë comptroller.address : comptroller;

598

599 return this.contract.methods["initialize(address ,address ,

ë uint256 ,string ,string ,uint8 ,uint256 ,uint256)"](comptroller ,

ë interestRateModel , initialExchangeRateMantissa , name , symbol ,

ë decimals , reserveFactorMantissa , adminFeeMantissa).send(tx);

600 }

601

602 "initialize(address ,address ,string ,string ,uint256 ,uint256)"(

603 comptroller: ComptrollerV2 | string ,

604 interestRateModel: string ,

605 name: string ,

606 symbol: string ,

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

607 reserveFactorMantissa: number | string | BN ,

608 adminFeeMantissa: number | string | BN ,

609 tx?: NonPayableTx

610): PromiEvent <TransactionReceipt > {

611 comptroller = comptroller instanceof ComptrollerV2 ?

ë comptroller.address : comptroller;

612

613 return this.contract.methods["initialize(address ,address ,

ë string ,string ,uint256 ,uint256)"](comptroller , interestRateModel ,

ë name , symbol , reserveFactorMantissa , adminFeeMantissa).send(tx);

614 }

Nomenclature of initialize function in ABI file:

Listing 19: market-sdk-main/src/abi/CToken.json (Line 962)

962 "name": "initialize",

963 "outputs": [],

964 "payable": false,

965 "stateMutability": "nonpayable",

966 "type": "function"

967 },

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to change the name of the initialize method of CTokenV2

class in order to correspond with the ABI contract interface.

Remediation Plan:

ACKNOWLEDGED: The Market.xyz team acknowledged this finding.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) COMMENTS OF PENDING
TASKS - INFORMATIONAL

Description:

The method _setInterestRateModel belonging to the classes CToken and

CTokenV2 from file market-sdk-main/src/lib/CToken.ts has the comment

change to InterestRateModel class later. This is not a security issue

itself, but it denotes a lack of quality for a project that it is

supposed to be deployed on production.

Figure 2: Comment on the code

Code Location:

Listing 20: market-sdk-main/src/lib/CToken.ts (Line 428)

427 _setInterestRateModel(

428 newInterestRateModel: string , // change to InterestRateModel

ë class later

429 tx?: NonPayableTx

430): PromiEvent <TransactionReceipt > {

431 return this.contract.methods._setInterestRateModel(

ë newInterestRateModel).send(tx);

432 }

Risk Level:

Likelihood - 1

Impact - 1

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to review the comments in the code and apply those

pending changes that would affect to the future functionality before get

into production environment.

Remediation Plan:

ACKNOWLEDGED: The Market.xyz team acknowledged this finding.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Result
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Missing methods
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

